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Abstract  

Machine vision will play a significant role in the next generation of IR 4.0 systems. 

Recognition and analysis of faces are essential in many vision-based applications. 
Deep Learning provides the thrust for the advancement in visual recognition. An 

important tool for visual recognition tasks is Convolution Neural networks (CNN). 

However, the 2D methods for machine vision suffer from Pose, Illumination, and 

Expression (PIE) challenges and occlusions. The 3D Race Recognition (3DFR) is 
very promising for dealing with PIE and a certain degree of occlusions and is 

suitable for unconstrained environments. However, the 3D data is highly irregular, 

affecting the performance of deep networks. Most of the 3D Face recognition models 

are implemented from a research aspect and rarely find a complete 3DFR 
application. This work attempts to implement a complete end-to-end robust 3DFR 

pipeline. For this purpose, we implemented a CuteFace3D. This face recognition 

model is trained on the most challenging dataset, where the state-of-the-art model 

had below 95% accuracy. An accuracy of 98.89% is achieved on the intellifusion 
test dataset. Further, for open world and unseen domain adaptation, embeddings 

learning is achieved using KNN. Then a complete FR pipeline for RGBD face 

recognition is implemented using a RealSense D435 depth camera. With the KNN 

classifier and k-fold validation, we achieved 99.997% for the open set RGBD 
pipeline on registered users. The proposed method with early fusion four-channel 

input is found to be more robust and has achieved higher accuracy in the benchmark 

dataset. 
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INTRODUCTION 

The current wave of Industrial Revolution 4.0 (IR 4.0) will mainly rely upon machine vision 

to drive the need for industrial automation. Human and robot coworkers, known as collaborative 

robots or cobots, have collaborated to complete tasks in various environments. Cobots play a 

vital role in IR 4.0 revolution. However, many of the robots developed are blind. Hence high-

precision machine vision will be a critical part of IR 4.0, making intelligent machines capable 

of interacting in collaborative environments and making decisions [1]. Many such applications 

require Face Analysis and Recognition [2][3]. 

Face Recognition (FR) is a method of identifying or validating a person's identity. The 

human face has highly non-rigid characteristics that have very discriminative features. Humans 

can identify each other with ease. Identifying faces from computers started as early as the 1960s 

and became popular with Eigenfaces [4] in the 1990s. It became famous as a non-invasive 

biometric with the advancement in technologies. Significant advancements in face recognition 

techniques can be grouped into four phases. The millstones can be called i) Holistic learning, 

ii) Locally handcrafted techniques, iii) Shallow learning, and iv) Deep learning. Phase-I uses 

holistic approaches. It dominated in the 1990s and spanned till early 2000 [5][6]. The locally 
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handcrafted feature extraction became popular in early 2000 [7]. In the next decade, shallow 

learning with the local feature reached an accuracy of 95% on the LFW dataset [7]. The 

breakthrough in deep learning technology driven by improved computer hardware and 

algorithms and the availability of large datasets made a new revolutionary phase with the advent 

of AlexNet [8] in 2012. DeepFace [9] and DeepID [10] achieved state-of-the-art performance 

in 2014, and research has shifted to deep-learning-based approaches. It took three decades to 

increase shallow recognition from 60% to 90%. In comparison, deep learning took its 

performance to 99.8% using a deeper pipeline on the LFW dataset in just three years. 

2D machine vision has many limitations [7], such as parallax. A parallax is an apparent 

displacement of an object due to a change in perspective and depth of focus. Other issues faced 

by FR are changing ambient light and variations in contrast. The 2D methods are also prone to 

spoofing or other attacks. The 3D data is rich in information. 3D cameras are becoming 

affordable and prevalent with the advancement in camera technology. This work proposes a 

complete, real-time, implementable 3D face recognition pipeline for practical use in this work. 

The organization of the paper is Section 1 introduces face recognition, Section 2 provides a 

literature review and discusses advancements in 3DFR. Section 3 describes the methodology 

and components of the proposed system in detail. Section 4 the results of the proposed 

multimodal 3D deep face recognition model as a feature extractor for RGBD face recognition 

applications in an open world. Section 5 is the conclusion. 

 

MATERIAL AND METHODS 

Literature Review 

In 2012, researchers began utilizing Deep Learning for visual tasks on ImageNet [8]. Deep 

CNN has a significant advantage over traditional processing methods of images and videos. In 

contrast, Recurrent Neural Network (RNN) processes continuous data such as voice and text 

[11][12]. Zhou et al. [13] proposed a real-time 3DFR system that employs a trained two-level 

cascade classifier and preprocesses RGB and depth data. Goswami et al. [14] suggest the 

unification of 2D and 3D information to accomplish a hybrid face recognition, applying 

techniques of entropy and saliency to construct a descriptor and utilizing geometrical analysis 

of 3D fiducial points.  

Large-scale face datasets used for the train deep learning model improvise recognition 

accuracy. Deep learning models can learn facial features and depict rich internal data 

information with the assistance of large datasets. 2D face datasets on a massive scale can be 

done by data scraping from the internet. Due to the lack of large-scale 3D face datasets 

available, it is challenging to train discriminative in-depth features for 3D facial models 

compared to the 2D face dataset. To solve this problem, Kim et al. [15] proposed a frontal 3D 

scan, producing a 2.5D depth map and extracting the depth map features using the VGG16 

network to represent the 3D face. VGG Face gave an excellent result on Bosphorus (99.240%). 

Except for the Bosphorus dataset, their results do not outperform the state-of-the-art 

conventional methods. Zhang et al. [16] proposed an expression and pose, invariant 3D face 

recognition. It directly takes 3D point clouds as input. However, its performance lacks 

considerably over FR3DNet with or without finetuning. It also needs an effective mechanism 

to handle the distribution gap between synthesized data and real 3D faces. A specialized Deep 

CNN model trained over a large dataset for 3D face recognition is proposed by Gilani et al. 

[17]. The FR3DNet uses the three-channel images generated from 3D point cloud data. 

However, Zhang et. al. [16] and Gilani et. al. [17] both use a synthetic 3D face dataset for 

training. FR3DNet uses two more maps than Kim et.al. [15]. Using more channels helps 

minimize the loss of 3D information but incurs additional memory and computation costs. 
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It should be remarked that 3D facial recognition is still an open field for improvement, either 

because it demands high computational power or lacks a large dataset to train algorithms or 

validate results. A complete survey of 3D facial recognition is presented in [18][19]. The 

proposed method should be a 3DFR application capable of running on embedded platforms like 

[20]. Modern 2D face recognition applications use large training datasets of millions of images 

and challenging testing datasets benchmarks. However, face recognition applications are 

deployed with different scenarios in the unconstrained real world and deal with unseen data. 

Generalized face recognition is more challenging and less studied. The generalized face 

recognition system should deal with unseen domains without updating or finetuning deep 

learning models. In 3D, such a face recognition application is rarely attempted in literature. 

Without making any assumptions about the target domain, this work aims to investigate and 

improve upon how 3D modalities can play a part in the construction of a generalised face 

recognition system. 

 

Methodology 

The proposed work methodology is accomplished in the following stages. First, the CNN 

architecture for 3D face is designed, trained, and finetuned on a challenging dataset. Later, the 

robust 3D face recognition model developed in the previous stage is used for developing a 

classifier for an open-set application gallery. Then the final 3D deep FR pipeline for the open 

world is implemented for effective recognition. Each stage is discussed in the following 

subsections. 

 

CNN Architecture 

The backbone of CuteFace3D is like ResNet-50 architecture. Since we use the residual units 

in our CNN architecture illustrated in Figure 1, it takes four-channel input of 224*224 instead 

of 3 channel input images, as shown in Figure 1. The last layer uses the most widely used 

SoftMax layer to classify 1200 identities from the intellifusion dataset. The SoftMax loss is 

presented as follows: 

𝐿1 = −
1

𝑁
∑ log

𝑒
𝑊𝑦𝑖 𝑥𝑖+𝑏𝑦𝑖

𝑇

∑ 𝑒
𝑊𝑗

𝑇𝑥𝑖+𝑏𝑗 𝑛
𝑗=1

𝑁
𝑖=1   (1) 

Where xi ∈ ℝd is a deep extracted feature of the i-th sample of the class yi, the embedding 

from the previous layer (avgpool) can be extracted for open-set recognition challenges with a 

vector size of 2048. These embeddings need to be more discriminative. On the other hand, the 

softmax loss does not optimize the embedding quality to achieve a higher similarity to interclass 

variations or diversities. From the literature, the gap is evident when SoftMax is used in deep 

CNN for face recognition. The intraclass variations [21, 22, 23, 24] are not handled effectively 

using the SoftMax function. This situation suits studying the extra channel used in the 3D 

multichannel face recognition. It will be evident if embedding quality is highly discriminative 

despite being trained on SoftMax loss due to the fusion of depth channel with RGB. Without 

using any specialized loss functions, such ArcFace [25]. Alternatively, without the special 

learning metrics used in SphereFace [26] for learning large margin features to estimate the 

discriminant power of the depth image fusion to RGB. This is one of the primary motives of 

this work to identify the significance of additional channel input in multichannel 3D face 

recognition.  
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Figure 1. CNN architecture with four channel input for an early fusion of depth and RGB 

images [27]  

 

Figure 1 shows that the parameters are not substantially increased compared to ResNet-50 

after modifications. The overall size of the model has been increased only by nearly 2MB. The 

ReLU activation function is used to assess the impact of fusion alone. Further can experiment 

with CReLU or PReLU as used in previous studies. Most 3D face recognition applications use 

training datasets of a few thousand scans and small testing datasets benchmarks. In this attempt 

of 3DFR, a training dataset of nearly four hundred thousand RGB-D scans and over forty 

thousand test images from the intellifusion dataset are used. The Intellifusion dataset is 

described in next. 

 

Training and Finetuning 

The CNN-based FR model with multimodal images is developed using the Intellifusion 

dataset. The dataset used is a high-quality dataset that uses different domains: age, ethnicity, 

expression, and occlusion. The training phase of CuteFace3D is illustrated in Figure 2. Training 

faces preprocessed using MTCNN are fed to CNN with a SoftMax layer. The Adam optimizer 

is utilized with a learning rate of 0.001. After every seven epochs, the learning rate decreases 

by 0.1. The model is trained for 50 epochs, and test accuracy is calculated using SoftMax for 

final prediction. Named this 3DFR model called CuteFace3D as a reference to the Center for 

Unmanned Technologies (CUTe).  

Further, as shown in Figure 3, the trained CuteFace3D model is used by dropping fully 

connected layers (FC) to extract RGBD face embeddings. The extracted embeddings of RGBD 

face scan with deep features are a vector of 2048 size. The embedding for each scan in the 

gallery is fed as input to the classifier. Then the similarity or dissimilarity metric or classifier 

can be employed, as shown in Figure 3. This work will compare the results using classifiers 

such as KNN for different values of k. If this is robust and discriminative, it is worthy of use in 

unseen domains and open world scenarios. 

 

 
Figure 2. Training of CuteFace3D 
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Figure 3. Learning from 3D face embeddings for classifier training 

 

3D Deep Face Recognition Pipeline 

The proposed methodology of a robust 3D face recognition system comprises four modules, 

namely a) Image acquisition module, b) Feature extraction module, c) Classifier module, and 

d) Inference module, as depicted in the system diagram illustrated in Figure 4.  

The acquisition module captures a video stream from the RealSense camera using 

pyrealsense2 python wrapper. The depth and RGB streams are aligned and co-registered for 

further consideration. When aligned pairs of frames are available, they are converted to NumPy 

arrays. A depth map is converted to an 8-bit color map. Then dlib deep face detector is applied 

to capture the face in the frame. If the face is found, it is cropped, preprocessed, and stored as 

registered with other user details. Fifty frames are extracted in every user registration. The 

inference module can also use the acquisition module before applying face recognition.  

The feature extraction module comprises a novel 3DCuteFace deep learning model using 

multimodal learning as described. The registered user scans are used to extract a feature vector 

size of 2048. The feature vectors from the gallery are used for training a classifier, and a best-

trained classifier is deployed for the face recognition task. The inference module acquires the 

image for inference as mentioned in the acquisition module and invokes the inference engine. 

The captured depth map and face scan will be fed to 3DCuteFace, and embedding is extracted. 

The embeddings are fed to the classifier model for final prediction. Thus, 3D face recognition 

in the real world can be achieved in an open-world environment.   

 

Training Dataset 

An Intellifusion RGB-D dataset contains 403,067 pairs of face images of 1,205 people. Each 

pair of face images is registered and includes RGB and depth images. It was issued during the 

international 3D face recognition algorithm challenge 2019. It incorporates huge variations. A 

few challenges of PIE are shown in Figure 5. Depth images are not shown here as they will be 

more distinct only for expression and extreme pose with no impact of illumination or 

background clutter. 

 

 
Figure 4. Face recognition pipeline using 3D embeddings from CuteFace3D for classifier and 

inference on real-time video streams. 

 

 



Journal of Integrated and Advanced Engineering (JIAE) 

Vol. 3, No. 1, March 2023: 37-46 

 

42  A. R. Faizabadi et al., Learning a Multimodal 3D Face Embedding for Robust RGBD Face Recognition 

 

 
Figure 5. RGB Images with different challenges related to pose, expression, illumination, and 

occlusion for the same ID. 

 

The exact train test split mechanism by X. Xiong et al. [26] is adopted. That is 90-10 split 

performed for training and testing, respectively. The IDs with less than ten samples were 

excluded, and after cleaning the dataset, a total of 361,799 face scans from 1200 identities were 

used for training. For the test dataset, 40,809 registered pairs were separated using the closed 

set approach. It means identities in the test set will always be present in the training set. The 

split list for the test set is 10%, validation and training set is 90% to keep results comparable.  

 

Application Data 

The data from the RealSense camera is collected for making a 3D face recognition system. 

The RGB and depth stream are recorded in an uncontrolled environment. For each subject, 50 

frames are captured in the gallery. After the registration of users is completed. An FR pipeline 

is completed by training the SVM and KNN classifier for registered users. Figure 6(a) and 

Figure 6(b) show the raw input of depth and RGB images. The preprocessed depth map and 

RGB face of a subject are illustrated in Figure 6(c) and Figure 6 (d). 

 

RESULTS 

CuteFace3D converges well with training and finetuning of the model with hyperparameters 

described in Section 3.2. The loss and accuracy of training can be seen in Figure 7. The orange 

line is for training, and the blue line indicates validation loss and accuracy, respectively. Figure 

7(a) indicates the loss function of CuteFace3D on the training and validation set, and Figure 

7(b) shows the accuracy of CuteFace3D on the training and validation set for {Citation}up to 

14 epochs. The training is carried out for 50 epochs. It took over seven days on a single GPU 

TitanXp system. After 50 epochs, the training accuracy was 99.67%, with a loss of 0.0379, 

evaluation accuracy of 99.77%, and a loss of 0.221. In the future, the CNN can be trained for 

different tasks and challenges and will be ensembled for robust face analysis.  

 

 
Figure 6. a) Raw RGB image b) Depth map captured from RealSense technology c) 

Preprocessed RGB image of a subject in face recognition system gallery d) Preprocessed face 

depth map without any reconstruction. 
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Figure 7. a) Training and validation loss b) Training and validation accuracy of CuteFace3D 

 

The results obtained for an Intellifusion RGB-D dataset surpassed the performance of the 

most advanced method found in the research literature, as seen in Table 1. The CuteFace3D 

model outperforms model [28] by approximately 16% and Model (A) [27] by over 10%. Model 

(B) uses pre-trained weights and has an accuracy of 94.64 percent. The CuteFace3D has a 4.25 

percent lower error rate than Model (B). 

The application gallery was collected for about 85 subjects, as described in section 3.5, and 

RGBD embeddings were extracted for 3DFR application development using the CuteFace3D 

model, as described in Figure 3. Then k-fold validation KNN is applied for classifier training. 

The KNN accuracy trained on the gallery population with error rate is shown for 10-fold 

validation, as illustrated in Figure 8. 3D face embedding of registered user gallery using KNN 

with 10-fold validation achieved an accuracy of 99.997%. 

 

Table 1. Accuracy of 3D face recognition model using Intellifusion RGB-D dataset 
Sl No. Reference Accuracy 

1 Tongyan Gong [27]  82% 

2 X. Xiong et al. [26] (A) 88.36% 

3 X. Xiong et al. [26] (B) 94.64% 

4 CuteFace3D V1 (Ours) 98.89% 

 

 
Figure 8. KNN Classifier result for FR population 
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Figure 9. a) Development setup of 3D face Recognition, the raw RGB image, and depth map 

are captured from RealSense camera technology D435 b) Output with face recognition in the 

presence of extreme pose and expression along with RGB image and depth map. 

 

The application development setup with the output of face recognition using a proposed 

system is shown in Figure 9(a) and its recognition with depth map in Figure 9(b). The person 

in action is very similar to the user represented in Figure 6 in terms of facial hair and outlook. 

In addition, the spectacles, extreme expression, pose, and skull cap is also introduced. In the 

gallery, there was no image of a person with such extreme expression or open mouth. Despite 

such extreme variations, a subject has been recognized with very fair accuracy. Similar results 

were observed in all the registered users of the 3DFR application. 

 

CONCLUSION 

A complete, robust 3DFR pipeline is successfully implemented and tested. The proposed 

work has achieved an accuracy of 98.89%, with an improvement of over 4% from the state-of-

the-art. The improvements are achieved by tweaking the CNN architecture for early RGB and 

depth fusion. This method is found to be more discriminative. The model is improvised with 

finetuning the hyperparameters such as Adam optimizer and using PReLU. The proposed 3DFR 

can effectively work with an extreme pose, expression, self-occlusion, facial hairs, and 

spectacles. The effectiveness is achieved through detailed experiments on embedding vector 

size and found the size 2048 optimal in the case of 3DFR applications in an open set. A domain 

adaptation pipeline uses an embedding of 2048 size. 3D face embedding of registered user 

gallery using KNN with 10-fold validation surpassed the accuracy of 99.997%. So, it has well 

demonstrated that the proposed 3DFR model can be used more effectively in a practical 3DFR 

real-time application pipeline. The RGBD camera with low resolution and low-quality depth 

map using RealSense D435 can work effectively without incurring the additional computational 

cost for reconstruction or quality enhancement.  
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